Decidable Gödel Description Logics without the Finitely-Valued Model Property
نویسندگان
چکیده
In the last few years, there has been a large effort for analyzing the computational properties of reasoning in fuzzy description logics. This has led to a number of papers studying the complexity of these logics, depending on the chosen semantics. Surprisingly, despite being arguably the simplest form of fuzzy semantics, not much is known about the complexity of reasoning in fuzzy description logics w.r.t. witnessed models over the Gödel t-norm. We show that in the logic G-IALC, reasoning cannot be restricted to finitelyvalued models in general. Despite this negative result, we also show that all the standard reasoning problems can be solved in exponential time, matching the complexity of reasoning in classical ALC.
منابع مشابه
Truth Values and Connectives in Some Non-Classical Logics
The question as to whether the propositional logic of Heyting, which was a formalization of Brouwer's intuitionistic logic, is finitely many valued or not, was open for a while (the question was asked by Hahn). Kurt Gödel (1932) introduced an infinite decreasing chain of intermediate logics, which are known nowadays as Gödel logics, for showing that the intuitionistic logic is not finitely (man...
متن کاملGödel Description Logics: Decidability in the Absence of the Finitely-Valued Model Property
In the last few years there has been a large effort for analysing the computational properties of reasoning in fuzzy Description Logics. This has led to a number of papers studying the complexity of these logics, depending on their chosen semantics. Surprisingly, despite being arguably the simplest form of fuzzy semantics, not much is known about the complexity of reasoning in fuzzy DLs w.r.t. ...
متن کاملInfinitely Valued Gödel Semantics for Expressive Description Logics
Fuzzy Description Logics (FDLs) combine classical Description Logics with the semantics of Fuzzy Logics in order to represent and reason with vague knowledge. Most FDLs using truth values from the interval [0, 1] have been shown to be undecidable in the presence of a negation constructor and general concept inclusions. One exception are those FDLs whose semantics is based on the infinitely valu...
متن کاملReasoning in Expressive Description Logics under Infinitely Valued Gödel Semantics
Fuzzy Description Logics (FDLs) combine classical Description Logics with the semantics of Fuzzy Logics in order to represent and reason with vague knowledge. Most FDLs using truth values from the interval [0, 1] have been shown to be undecidable in the presence of a negation constructor and general concept inclusions. One exception are those FDLs whose semantics is based on the infinitely valu...
متن کاملMonadic Fragments of Gödel Logics: Decidability and Undecidability Results
The monadic fragments of first-order Gödel logics are investigated. It is shown that all finite-valued monadic Gödel logics are decidable; whereas, with the possible exception of one (G↑), all infinitevalued monadic Gödel logics are undecidable. For the missing case G↑ the decidability of an important sub-case, that is well motivated also from an application oriented point of view, is proven. A...
متن کامل